The overexpression of a mutant *Brassica* 3-hydroxy-3-methylglutaryl-CoA synthase A in transgenic model plant, tobacco, promotes growth and seed yield

Pan Liao, Hui Wang, An-Shan Hsiao, Mingfu Wang, Mee-Len Chye
School of Biological Sciences, HKU

Thomas Bach (collaborator)
Institut de Biologie Moléculaire des Plantes, CNRS, Strasbourg, France

http://dx.plos.org/10.1371/journal.pone.0098264
Importance of increasing seed yield in crops

● Seeds ➔ Food

major food source for man and domesticated animals
rice, wheat and maize comprise ~60% food
(http://www.fao.org/docrep/u8480e/u8480e07.htm)

● World population ~7 billion (2014)

~13.5% of global population go hungry
(http://www.who.int/bulletin/volumes/89/2/11-020211/en/)

● Identification of genes that control seed yield is useful
The overexpression of a mutant *Brassica* 3-hydroxy-3-methylglutaryl-CoA synthase A (HMGS), enzyme in isoprenoid pathway in transgenic model plant, *tobacco*, promotes growth and seed yield.
Isoprenoids

- Large, diverse, natural products
- **Phytosterols**: lower cholesterol
- Gibberellic acid, abscisic acid (ABA) & cytokinins: **growth & development**
- Carotenoids and chlorophyll: **photosynthesis**
Isoprenoid biosynthesis in plants

Hypothesis:
Overexpression of HMGS will increase phytosterols (end-products)

Enzymes are shown in bold. Pathway inside the mitochondria and plastid are boxed. Arrows between cytosolic and plastid compartments represent metabolic flow between them (greater arrow for more flux). Abbreviations: ABA, abscisic acid; AACT, acetacetyl-CoA thiolase; BR6OX2, brassinosteroid-6-oxidase 2; CYP710A1, sterol C-22 desaturase; CYP85A1, cytochrome P450 monooxygenase; DMAPP, dimethylallyl diphosphate; DWF1, delta-24 sterol reductase; DXR, 1-deoxy-D-xylulose 5-phosphate reductoisomerase; DXS, 1-deoxy-D-xylulose 5-phosphate synthase; FPP, farnesyl diphosphate; GA-3-P, glyceraldehyde-3-phosphate; FPPS, farnesyl diphosphate synthase; GAs, gibberellins; GGPP, geranylgeranyl diphosphate; GGPPS, geranylgeranyl diphosphate synthase; GPP, geranyl diphosphate; HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; HMGR, 3-hydroxy-3-methylglutaryl-CoA reductase; IPP, isopentenyl diphosphate; IPP1, isopentenyl/dimethylallyl diphosphate isomerase; Q10, coenzyme Q10; SMT, sterol methyltransferase; SQS, squalene synthase.
Background on BjHMGS

Cloned *BjHMGS* cDNA encoding 3-hydroxy-3-methylglutaryl-CoA synthase (*BjHMGS*)
from an edible plant, *Brassica juncea* (Brassicaceae family)

Characterization of BjHMGS

- BjHMGS is developmentally regulated and stress-responsive

 Nagegowda et al. (2005) *Planta* 221: 844-856

- Expression of recombinant wild-type & mutant HMGS in bacteria

 mutant S359A displayed a 10-fold higher enzyme activity

- Crystal structure of BjHMGS

 Pojer et al. (2006) *Proc Natl Acad Sci USA* 103: 11491-11496
Will the overexpression of BjHMGS1 in plants enhance phytosterol production?

Tested the hypothesis in Arabidopsis, model plant with short generation time
Brassicaceae family closely-related to Brassica

Results:
Overexpression of wild-type & mutant BjHMGS1 in Arabidopsis
up-regulated genes in sterol biosynthesis & enhanced sterol production and stress tolerance
Will the **positive effects** be conserved in a phylogenetically less-related species?

Tested in **tobacco (model plant)** from distant Solanaceae family

Tobacco is easy to transform & regenerate

Plant of choice in plant genetic engineering experiments

easy to obtain transgenic plants;

reduces time to obtain & analyse progeny from derived transgenic lines
Sterol increase was conserved in transgenic tobacco HMGS-OE seedlings (S) and leaves (L).

Campesterol, stigmasterol, \(\beta\)-sitosterol and total sterol content in 20-d-old seedlings and leaves from 2-m-old plants.

Values are means ± SD (\(n = 5\)); H, higher than vector (pSa13)-transformants;
* \(P < 0.05\); ** \(P < 0.01\) by Student’s t-test.

DW, dry weight; Bars represent SD.

Overexpression of BjHMGS1 in transgenic tobacco

(phylogenetically-distant species)

also resulted in

increased plant growth, pod size & seed yield

<table>
<thead>
<tr>
<th>210-d-old flowering plants</th>
<th>vector</th>
<th>OE-WT</th>
<th>OE-S359A</th>
</tr>
</thead>
<tbody>
<tr>
<td>210-d-old flowering plants</td>
<td>pSa13</td>
<td>401</td>
<td>402</td>
</tr>
<tr>
<td></td>
<td>10 cm</td>
<td>210-d</td>
<td>76 cm</td>
</tr>
</tbody>
</table>

14-d-old tobacco HMGS-OE seedlings grow better than vector(pSa13)-transformants

A Seedlings 14-d post-germination
Bar = 1 cm
pSa13, the vector-transformed control
OE-wtBjHMGS1 ("401" and "402")
OE-S359A ("603" and "606")

B Root length measurements of 14-d-old seedlings
Values are mean ± SD (n=30); H, higher than control

C Dry weight determination of 14-d-old seedlings
Values are mean ± SD (n=30); H, higher than control

a, significant difference between HMGS-OE and vector transformant
b, significant difference between OE-wtBjHMGS1 and OE-359A
80-d-old HMGS-OEs grow better than vector(pSa13)-transformants

Representative tobacco plants photographed 80 days after germination
Bar = 10cm

pSa13, vector control
OE-WT, overexpressing wild-type HMGS
OE-S359A, overexpressing mutant HMGS S359A

Statistical analyses on height of plants at different growth stage
Values are mean ± SD (n=30)
Bars are SD; H, higher than control
a, significant difference between HMGS-OE and vector transformant
b, significant difference between OE-wtBjHMGS1 and OE-359A
**, *P* < 0.01 by Student’s t-test
98-d-old-tobacco HMGS-OEs show better growth

pSa13, the vector-transformed control
OE-wtBjHMGS1 (lines “401”, “402” and “404”)
OE-S359A (lines “602”, “603” and “606”)

Bar (A and C) represents 10 cm
Values (B and D) are mean ± SD (n=6); Bars are SD; **, \(P < 0.01 \); *, \(P < 0.05 \); ** and *, significantly higher than control, by the Student’s \(t \)-test

Tobacco HMGS-OEs showed increase in pod size and seed yield

A Phenotype of tobacco pods. Scale bar = 1 cm.

B Average dry weight per pod.

C Average seed number per pod.

Thirty independent readings were taken for each line. Values are means ± SD, n = 30.; **, P < 0.01; *, P < 0.05 by the Student’s t-test.

pSa13, the vector-transformed control

OE-wtBjHMGS1 (lines 401” and “402”)

OE-S359A (lines “603” and “606”)

Liao et al. (2014) PLOS ONE 9(5): e98264
RT-PCR on expression of genes encoding “downstream” enzymes

Enzymes are shown in bold. Pathway inside the mitochondria and plastid are boxed. Arrows between cytosolic and plastid compartments represent metabolic flow between them (greater arrow for more flux). Abbreviations: ABA, abscisic acid; AACT, acetoacetyl-CoA thiolase; BR6OX2, brassinosteroid-6-oxidase 2; CYP710A1, sterol C-22 desaturase; CYP85A1, cytochrome P450 monoxygenase; DMAPP, dimethylallyl diphosphate; DWF1, delta-24 sterol reductase; DXR, 1-deoxy-D-xylulose 5-phosphate reductoisomerase; DXS, 1-deoxy-D-xylulose 5-phosphate synthase; FPP, farnesyl diphosphate; GA-3-P, glyceraldehyde-3-phosphate; IPP, isopentenyl diphosphate; Q10, coenzyme Q10; SMT, sterol methyltransferase; SQS, squalene synthase.
Effects of HMGS on isoprenoid biosynthesis gene expression in tobacco HMGS-OEs

Expression of **HMGS downstream** genes by qRT-PCR

Total RNA was extracted from 20-d-old tobacco seedlings. H, value higher than the control ($P<0.05$, Student’s t-test); L, value lower than the control ($P<0.05$, Student’s t-test). Values are means ± SD (n=3).

pSa13, vector-transformed control

OE-wtBjHMGS1 (lines “401”, “402” and “404”)

OE-S359A (lines “602”, “603” and “606”)

Effects of HMGS on the expression of plastidial GGPPSs in tobacco HMGS-OEs

qRT-PCR in 20-d-old tobacco HMGS-OE seedlings

Liao et al. (2014) PLOS ONE 9(5): e98264
RT-PCR on expression of genes encoding “downstream” enzymes

Tobacco overexpressing wild-type BjHMGS1 and S359A showed induction of native NtHMGR1, NtIPI2, NtSQS, NtSMT1-2, NtSMT2-1, NtSMT2-2 and NtCYP85A1 resulting in enhanced sterol content, improved growth and enhanced seed yield (26.5% for OE-wtBjHMGS1; 67% for OE-S359A)

NtSQS greatly upreg in S359A

Summary

Isoprenoid pathway can be engineered using HMGS S359A to enhance phytosterol content, growth and seed production in phylogenetically-distant tobacco

<table>
<thead>
<tr>
<th>Parameters</th>
<th>% increase in OE-wtBjHMGS1 over vector control</th>
<th>% increase in OE-S359A over vector control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phytosterol content (20-d-old seedlings)</td>
<td>4.4</td>
<td>25.7</td>
</tr>
<tr>
<td>Phytosterol content (leaves from 60-d-old plants)</td>
<td>12.1</td>
<td>18.7</td>
</tr>
<tr>
<td>Height (98-d-old plants)</td>
<td>90.9</td>
<td>97.3</td>
</tr>
<tr>
<td>Height (210-d-old plants)</td>
<td>21.0</td>
<td>45.2</td>
</tr>
<tr>
<td>Seed yield</td>
<td>26.5</td>
<td>67.4</td>
</tr>
<tr>
<td>Pod dry weight</td>
<td>22.6</td>
<td>50.2</td>
</tr>
</tbody>
</table>