Divergent meta-transcriptional response of the upper and lower jaw dental plaque biofilm after sucrose exposure

Bart Keijser1,2*, Michel Ossendrijver1, Paulo de Boer1, Lodewic Van Twillert1, Mark Buijs2, Roy Montijn1

1Microbiology and Systems Biology, TNO, Zeist, The Netherlands;
2Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands

INTRODUCTION

The intake of sucrose poses a risk for the development of dental caries. Intake of sucrose can be fermented by bacteria in the dental biofilm leading to the formation of lactic acid, and lowering of the pH. Localized accumulation of acids can result in dental demineralization, a key actor in dental decay. In this pilot study we aimed to gain understanding of this process by analysis of the transcriptional response of the dental biofilm upon exposure to sucrose.

METHODS

Study design: One human volunteer was requested to rinse the mouth for five minutes with a 10% sucrose solution. At the start of the pilot study and 30 minutes after the rinse, dental plaque biofilm samples were collected from lingual molar surfaces at contralateral quadrants of the upper and lower jaw. Samples were snap frozen and stored until further analysis.

Metatranscriptome analysis: RNA was extracted from samples and enriched for mRNA (RiboZero). After preparation of metagenomic libraries (TruSeq), samples were analysed by sequencing. Sequence data was quality filtered and merged. Ribosomal sequence reads were removed in SortMeRNA. Meta-transcriptomic reads were then mapped against the non-redundant protein database through BLASTX using DIAMOND (V.0.9.9). Mapping results were parsed in MEGAN (v. 6) and linked to KEGG functional modules (KEGG reference library december 2017). Statistical analysis was performed in DeSeq2.

RESULTS

The sucrose rinse resulted in significant meta-transcriptional changes, revealing a modest shift in for the lower jaw plaque biofilm and larger changes for the upper jaw biofilm (Figure 1). The upper and lower jaw plaque biofilms showed different taxonomic representation in the meta transcriptomic reads (Figure 2). We identified 493, (20%) upregulated and 486 (20%) downregulated gene orthologues (Figure 3 & Table 1). Prominent were changes in expression of PTS metabolite transporters, glycoside hydrolases, a downregulation of oxidative phosphorylation and increased expression of gene groups related to dissimilatory sulfate reduction, concomitant with a decrease in the expression of gene groups related to nitrate reduction. When plotting transcriptional changes of upper and lower jaw plaque biofilm, we found that for some gene groups transcriptional changes were similar for both ecosystems. However, we also found cases where genes were upregulated in one but downregulated in the other (Figure 4).

CONCLUSIONS

Sucrose rinse induced a shift in the expression of carbon uptake and hydrolase genes, including upregulation of sucrose and fructose-specific PTS transporters. We found down regulation of genes for components of oxidative phosphorylation perhaps reflecting overflow metabolism. Importantly, upper and lower jaw biofilms displayed striking differences in transcriptional response. While for many gene-orthologs, transcription of upper and lower jaw plaque biofilms was in concordance, for others this was not the case showing divergent transcriptional responses, e.g. upregulated in upper jaw biofilm and down regulation for the lower jaw biofilm. The transcriptional profile of the upper and lower jaw plaque microbiota showed significant differences in taxonomic representation.

Figure 1. PCA plot and hierarchical heat map of transcriptional profile (KO orthologues) show profound changes in the upper and lower jaw buccal plaque biofilm transcriptome of following a sucrose rinse. While the upper and lower jaw plaque biofilms differ in meta transcriptional profile at the start of the experiment, they also respond differently to the sucrose rinse.

Figure 2. Taxonomic representation of the plaque biofilm meta-transcriptomic reads (genus level). The transcriptional profile of the lower jaw biofilm is less diverse compared to the upper jaw biofilm, and dominated by Streptococcus and Veillonella species. The upper jaw biofilm is more diverse and transcriptional changes following sucrose rinse are represented by a larger group of genera.

Table 1. Top 15 up- and downregulated gene orthologues.

Figure 3. KEGG orthologous changes in expression of before and after sucrose rinse of the upper jaw plaque microbiota plotted against that of the lower jaw plaque microbiota. The boxplot show examples of the orthologous groups of the four quadrants.

Financial support for this study was provided by the Dutch government EZ-Co-financing grant no. 0616.17070.151207.