Feasibility of PNA-mediated
Affibody-based radionuclide pretargeting

Dr. Kristina Westerlund
KTH School of Biotechnology
Biologics & Biosimilars Congress
Berlin, February 2, 2016
Outline

- Difference between conventional radioimmunotherapy (RIT) and pretargeting RIT
- Affibody Molecules, HER2 receptor and HER2 binding Affibody molecules
- Design, production and *in vitro* characterization of PNA and Affibody-PNA chimeras
- Biodistribution of PNA and in vivo pretargeting
- Summary
- Future Work
Conventional radioimmunotherapy

Injection of radiolabeled Ab

Tumor cell

Accumulation in tumor, but slow clearance from blood

Time
Pretargeting for radioimmunotherapy

First injection: Ab

Accumulation in tumor and slow clearance from blood

Second injection: Radionuclide (after waiting time)

Covalent or non-covalent interaction linking the primary and secondary agents
Affibody molecules – Alternative scaffold affinity proteins

- Affibody molecules are 58 amino acid three-helix-bundle affinity alternative scaffold proteins
- Derived from the B domain in staphylococcal protein A
- Small MW (6.5 kDa) – allows for fast biodistribution and high tissue penetration
- Using phage display, 13 solvent-exposed sites in helix one and two are mutated randomly to generate binder libraries
- High affinity binders have been generated to cancer associated targets such as HER2, EGFR, HER3, IGF-1R, PDGFRβ and CAIX
- High solubility, high thermal stability
- Chemical synthesis or low-cost recombinant expression in E. coli
HER2 - Human epidermal growth receptor 2

- Also known as receptor tyrosine-protein kinase 2, ERBB2
- Over-expressed in numerous cancers, including ovarian and bladder cancers, and about 20% (15-20%) of all breast cancer cases
- HER2-positive breast cancers are associated with poor survival
- Since the introduction of HER2-targeted treatments, survival of patients with HER2-positive breast cancer has improved significantly

Structural basis for high-affinity HER2 receptor binding by an engineered protein, Eigenbrot C. et al. PNAS (2010)
PET/CT imaging of HER2+ metastatic breast cancer using [\(^{68}\text{Ga}\)]-ABY-025

- ABY-025 is a HER2-binding Affibody molecule conjugated with a DOTA chelator
- Labeled with \(^{68}\text{Ga}\) for PET imaging
- High contrast HER2 images were acquired 2-4 h after injection of \(^{68}\text{Ga}\)-ABY-025
- Non-invasive way of determining HER2 status in metastatic breast cancer
- HER2-targeted treatment was changed in 3/16 patients as a consequence of \(^{68}\text{Ga}\)-ABY-025 PET
- Affibody molecules labeled with residulizing radiometals are suitable for imaging studies but not for therapy due to a high kidney uptake

Two patients (A and B) with wide-spread metastatic breast cancer
- Patient A has a HER2-negative primary tumor
- Patient B has a HER2-positive primary tumor

A1 and B1 \([\(^{18}\text{F}\)]\)-FDG PET
A2 and B2 \([^{68}\text{Ga}]\)-ABY-025 PET

Measuring HER2-Receptor Expression in Metastatic Breast Cancer Using [\(^{68}\text{Ga}\)]ABY-025 Affibody PET/CT
Design of complementary PNA-based hybridization probes

Hybridization probe 1 (HP1):
Conjugated to Affibody molecule

Hybridization probe 2 (HP2):
Complementary PNA sequence
Peptide nucleic acid (PNA)

- **PNA (Peptide nucleic acid)** is a synthetic DNA mimetic in which the phospho-sugar backbone has been replaced by a more peptide-like charge neutral backbone.
- PNA has four different bases just as DNA and complementary PNA sequences are able to base-pair with each other, obeying Watson-Crick complementarity rules.
- PNA:PNA duplexes show thermal stabilities that exceed that of natural nucleotides.
- Being neither a peptide nor a nucleotide makes PNA resistant to nucleases and proteases and PNA molecules have excellent serum stability.
- PNA molecules have low toxicity, are nonimmunogenic and show low cellular uptake in vivo.
Solid phase synthesis of PNA-based hybridization probes

HP1 and *HP2* were synthesized in-house using solid phase synthesis with commercially available monomers.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Teor. Mass</th>
<th>Exp. Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-G-G-S-S-agtctggatgtagtc-E-K(DOTA)-AEEA-E-CONH₂</td>
<td>5396.4 Da</td>
<td>5396.5 Da</td>
</tr>
<tr>
<td>DOTA-AEEA-S-S-gactacatccagact-E-Y-CONH₂</td>
<td>5157.8 Da</td>
<td>5158.3 Da</td>
</tr>
</tbody>
</table>
Production of $Z_{HER2:342}$-SR-$HP1$

I.
- Cloning
- Expression
- IMAC purification

II.
- Solid phase synthesis
- HPLC purification

$Z_{HER2:342}$-SR-H_6 + $HP1$

III.
- Sortase A*/eSortase A mediated ligation
- HPLC purification
- IMAC purification

$Z_{HER2:342}$-SR-$HP1$

DOTA: macrocyclic metal chelator
[AEEA]: PEG-based spacer

GGGSS-agt ctg gat gta gtc-EK-[AEEA]-E-NH$_2$

DOTA
Biophysical characterization - Biacore affinity measurement

[Graph showing SPR sensorgrams with time (minutes) on the x-axis and resonance units (RU) on the y-axis.]

- HER2 on chip, pre-hybridized Z\textsubscript{HER2:342}-SR-\textit{HP1:HP2} is flown over the surface.

- Biacore SPR sensorgrams of binding pre-hybridized Z\textsubscript{HER2:342}-SR-\textit{HP1:HP2} complex to immobilized HER2 receptor.

K\textsubscript{D}~212 pM

- Resonance units (RU)

<table>
<thead>
<tr>
<th>Concentration (nM)</th>
<th>Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.5 nM</td>
<td>0</td>
</tr>
<tr>
<td>11.8 nM</td>
<td>5</td>
</tr>
<tr>
<td>5.9 nM</td>
<td>10</td>
</tr>
<tr>
<td>2.9 nM</td>
<td>15</td>
</tr>
<tr>
<td>1.5 nM</td>
<td>20</td>
</tr>
<tr>
<td>0.7 nM</td>
<td>25</td>
</tr>
</tbody>
</table>
Biophysical characterization

- **Biacore affinity measurement**

- Biacore SPR sensorgrams of HP2 binding to immobilized $Z_{HER2:342}$-SR-HP1.

- The $Z_{HER2:342}$-SR-HP1:HP2 complex has a very slow dissociation rate, 17 hours after injection with 725 nM HP2 the dissociation was still <5% of the initial response.
Biodistribution of 125I-HP2 and 111In-HP2 in normal (non-tumor) NMRI mice

Groups of five NMRI mice were injected with $1 \ \mu g$ radiolabeled HP2, either 125I-HP2 or 111In-HP2, and the biodistribution was measured 1 and 4 h.p.i.

As a comparison, renal uptake of $1 \ \mu g$ 111In-labeled DOTA-Z$_{HER2:342}$, 4 h.p.i. was (180–200 %ID/g), i.e., 45–50-fold higher.
Specific HER2 targeting by the $Z_{HER2:342}$-**HP1** Affibody-PNA chimera

- **Specific HER2 targeting** demonstrated by injection of 5 µg 111In-$Z_{HER2:342}$-SR-**HP1** in mice with HER2-positive SKOV-3 xenografts.

- Control 1: a blocked group co-injected with an excess amount (500 µg) of non-labeled $Z_{HER2:342}$ Affibody molecule

- Control 2: a group with HER2-negative Ramos cell xenografts.
Pretargeting: BALB/c Nude mice with HER2-expressing SKOV-3 xenografts

All mice were injected with 1 μg radiolabeled HP2, 125I-HP2 (left) or 111In-HP2 (right), and the biodistribution was measured at 1 h p.i.

Pretargeted mice had been injected with 100 ug $Z_{HER2:342}$-SR-HP1 4 hour prior to HP2 injection, the **control mice** received no such injection
Imaging of HER2-expressing SKOV-3 xenografts in mice

A- Direct targeted mouse, 2 μg 111In-DOTA-Z$_{HER2:K58}^	ext{}$
B- Pretargeted mouse, preinjected with 100 μg Z$_{HER2:342}$-SR-HP1 4 hours prior to injection with 1 μg 111In-HP2
C- Control mouse, Injected with 1 μg 111In-HP2

All three mice were injected with 650 kBq of radiolabeled compound 1 h before image acquisition

Gamma-camera imaging of HER2-expression in SKOV-3 xenografts
Summary:

- Binding of 111In-$Z_{HER2:342}$-SR-$HP1$ to HER2-expressing SKOV-3 xenografts was HER2-specific.

- Accumulation of 125I- and 111In-labeled $HP2$ in HER2-expressing tumors is dependent on pretargeting.

- Without $Z_{HER2:342}$-SR-$HP1$ pre-injection the tumor uptake of HP2 was very low.

- Affibody-based PNA-mediated pretargeting can thus provide higher accumulation of radiometals in tumors in comparison with kidneys.
Future work

- Optimize labeling of HP2 with a therapeutic radionuclide, i.e. 177Lu (Ongoing)

177Lu is a commercially available medium-energy β-emitter, suitable for treatment of small and medium-size tumors

- Experimental therapy on mice with SKOV-3 xenografts

$Z_{\text{HER2:342}}$-SR-HP1 and 177Lu-HP2 (Planned autumn 2016)
Publications:

Feasibility of Affibody Molecule-Based PNA-Mediated Radionuclide Pretargeting of Malignant Tumors (2016)
Hadis Honarvar, Kristina Westerlund et al. Theranostics 6, 93–103.

M.Sc. Hadis Honarvar won the Marie Curie Award for presenting this work at the European Association of Nuclear Medicine in 2015
Acknowledgements

- Prof. Amelie Eriksson Karlström
- MSc. Hadis Honarvar
- Dr. Mohamed Altai
- Prof. Vladimir Tolmachev
QUESTIONS?